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We explore a model of a random relaxation shot noise system in which (i) the shot inflow is a general
Poisson point process, with possibly infinite Poissonian rates; and (ii) the exponential relaxations governing the
shot decay are randomized. This system model is applicable to physical environments polluted by radioactive
contamination of heterogeneous types. The statistics of random relaxation shot noise systems are analyzed
quantitatively and comprehensively: stationary structure, correlation structure, process distribution, fractality
and asymptotic fractality, and the display—both separately and simultaneously—of the Noah and Joseph
effects. Results are obtained explicitly and in closed form, and facilitate the design of tractable shot noise

systems with unique features.
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I. INTRODUCTION

Shot noise is the most fundamental quantitative model of
discontinuous noise in continuous-time physical systems,
and its research was pioneered by Campbell [1,2], Schottky
[3], and Rice [4,5].

The classic model. In the classic shot noise model, exter-
nal shots of random magnitude hit a physical system ran-
domly in time. Shot arrivals follow a standard Poisson pro-
cess, and shot magnitudes—upon impact—are independent
and identically distributed (i.i.d.) positive-valued random
variables drawn from a general, common, probability distri-
bution. After impact, the shots undergo an exponential relax-
ation and decay to zero. The system’s shot noise level &(7) at
time ¢ equals the sum of all shot magnitudes present in the
system at time 7. The resulting shot noise process [&(z)], is
a Markovian process. Its dynamics are governed by the
Ornstein-Uhlenbeck linear stochastic differential equation,
driven by Poissonian noise.

Noah and Joseph effects. Named by Mandelbrot and Wal-
lis, the Noah effect and the Joseph effect are used to describe
fractal behavior of stationary random processes [6]. The
former indicates “amplitudal fractality”—Ilarge amplitudal
surges characterized by heavy-tailed (fat-tailed) stationary
distributions [7]. The latter indicates “temporal fractality”—
long-ranged temporal dependencies characterized by slowly
decaying autocorrelations [8—10].

Classic shot noise processes can display the Noah effect,
but cannot display the Joseph effect. Indeed, the exponential
relaxation mechanism of classic shot noise systems always
renders their autocorrelation functions exponential. In order
to obtain shot noise processes displaying the Joseph effect,
generalized relaxation mechanisms need to be considered.
Two classes of shot noise system models capable of display-
ing both the Noah and Joseph effects, and generalizing the
classic system model, are explored in (i) [11,12]—
considering a linear non-Markovian relaxation mechanism;
(ii) [13—15]—considering a nonlinear Markovian relaxation
mechanism. (The intersection of these two classes of
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system models—namely, a linear Markovian relaxation
mechanism—is the classic shot noise system model.)

Random relaxations. In this research we explore an alter-
native shot noise system model capable of displaying both
the Noah and Joseph effects: random relaxation shot noise.
In this system model we return to the classic exponential
relaxation mechanism—adding one little twist: randomiza-
tion. Specifically, each arriving shot, upon impact, picks at
random its exponential relaxation mechanism. In other
words, each arriving shot, upon impact, picks at random its
half-life.

As will be demonstrated in the following, the incorpora-
tion of randomized relaxation has a dramatic effect on the
resulting shot noise process [£(7)],: it changes the process’s
correlation structure profoundly, while having no effect
whatsoever on the process’s stationary structure. This
amplitudal-temporal “orthogonality” is not achievable in the
aforementioned generalized shot noise system models
([11,12] and [13-15]), and facilitates the design of shot noise
systems with unique features.

Radioactive pollution. As a concrete example of random
relaxation shot noise, consider a physical environment pol-
luted by radioactive contamination. The contamination
events are administered to the environment randomly in
time, and are of varying sizes and heterogeneous types. The
ith contamination event is characterized by three random
“coordinates:” (i) the time at which the contamination took
place; (ii) the size of the contamination; and (iii) the half-life
of the contaminating material. The overall radioactivity level
of the polluted environment is thus a shot noise process
[&(r)],—albeit with randomly varying relaxation rates.

The difference between the cases of homogeneous pollu-
tion (where all contaminations are of the same type) and
heterogeneous pollution (where the contaminations are of
different types) is profound. Modeling the heterogeneous
case via the classic shot noise model—rather than via the
random relaxation shot noise model—leads to utterly incor-
rect results and predictions which grossly underestimate the
long-term aftereffects of the radioactive pollution.

Inflow and analysis. In this research, we step beyond the
conventional description and analysis of shot noise system
models. In method, we follow [13-15] and consider the shot
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inflow to be a general Poisson point process (rather than a
standard Poisson process). This allows the incorporation of
shot inflows with infinite Poissonian rates, which, in turn,
yields shot noise systems residing beyond the realm of clas-
sic shot noise systems—including, in particular, the class of
fractal shot noise systems. In analysis, we follow [16-18]
and undertake an approach that enables the simultaneous
study of the Noah and Joseph effects.

A head-on simultaneous study of the Noah and Joseph
effects is, by definition, impossible. Stationary processes ex-
hibiting the Noah effect have infinite variances. Conse-
quently, they fail to possess autocovariance functions—via
which their temporal correlations are usually analyzed, and
via which the Joseph effect is defined. Hence the study of the
Joseph effect can be carried out only in the presence of finite
variances—excluding all processes with heavy-tailed station-
ary distributions.

The methodology of correlation cascades was devised in
[16,17] in order to quantitatively measure and characterize
the temporal dependencies of random processes driven by
infinite-variance Lévy noises, and was applied in [18] to the
case of infinite-variance shot noise systems. This methodol-
ogy further enabled the study of the ergodic properties of the
random processes under consideration [19].

Following [18], a resolution-contingent Poissonian auto-
covariance function is introduced. This function (i) is easily
computable and tractable; (ii) characterizes the process dis-
tributions of the random relaxation shot noise systems; and
(iii) is always well defined—even in the case of divergent
noise levels (let alone in the case of infinite-variance noise
levels). The Poissonian autocovariance facilitates a precise
quantitative analysis of random relaxation shot noise systems
displaying, simultaneously, the Noah and Joseph effects.

Organization. The paper is organized as follows. We be-
gin, in Sec. II, with the formulation of the random relaxation
shot noise system model. Analysis of the shot noise station-
ary structure and correlation structure is conducted, respec-
tively, in Secs. III and IV—followed by the analysis of the
Noah and Joseph effects conducted in Sec. V. We conclude,
in Sec. VI, with the study of fractal random relaxation shot
noise systems.

A note about notation. Throughout the paper I{S} denotes
the indicator function of the set S.

II. RANDOM RELAXATION SHOT NOISE

The random relaxation shot noise system model is formu-
lated in this section: in Sec. II A, we introduce the model,
and in Sec. II B, we describe the statistics of the underlying
shot inflow. The notion of Poisson point processes, exploited
in Sec. II B, is reviewed in the Appendix.

A. Model description

We consider a physical system which is stochastically per-
turbed by external shots. Shots are labeled by the index i, and
each shot is described by three “impact coordinates:” ¢, is the
time epoch at which shot i hit the system (z; real); x; is the
magnitude, upon impact, of shot i (x;>0); y; is the relaxation
rate of shot i (y;>0).
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Each shot, right after impact, decays to zero—the dissipa-
tion of shot i being governed by the linear differential equa-

tion X=—y;X (with initial level x,). Hence, the magnitude of
shot i, 7 time units after impact, is x; exp(—=y;7) (7=0), and
the half-life of shot i is (In 2)/y;.

Consequently, the collection of all shot magnitudes
present in the system at time ¢ is given by

E(1) = {x; exp[- y;(t - ti)]}rlsz (1)

(¢ real). Equation (1), in turn, implies that the number of shot
magnitudes present in the system at time ¢, residing above
the resolution level /, is given by

N(1) = X Hx; exp[- ydt—1)]> 1} (2)

1=t

(¢ real; [>0); and that the system’s shot noise level at time
t—i.e., the superposition of all shot magnitudes present in
the system at time +—is given by

&)= 2 xi expl-yilt = 1)] (3)
1=t
(¢ real).

Note that the integer N,() equals the size of the subcol-
lection E(1) N (/,%), and that the shot noise level &) equals
the sum of the points of the collection Z(¢). Also note that
the shot noise level &(r) can be constructed from the
resolution-contingent integers {N,(r)},~, via

&) = f Ni()dl (4)
0

(¢ real).
The level processes N)=[N,(t)], (I>0) and the shot noise
process £=[&(t)], will be at the main focus of our analysis.

B. Shot inflow statistics

In the classic shot noise system model, the statistics of the
underlying shot inflow are as follows.

(1) The shots’ arrival epochs {t;}; form a standard Poisson
process with intensity 7 (7>0). In other words, the shots’
interarrival periods form a sequence of i.i.d. positive-valued
random variables drawn from a common exponential prob-
ability distribution with mean 1/ 7.

(2) The shots’ impact magnitudes {x;};, form a sequence of
i.i.d. positive-valued random variables drawn from a com-
mon probability distribution Fy. (The arrival epochs {,}; and
the impact magnitudes {x;}; are independent.)

(3) The shots’ relaxation rates {y;}; all equal a common
positive constant.

A natural generalization of the classic shot noise system
model to the random relaxation shot noise system model is to
consider the shots’ relaxation rates {y;}; as forming a se-
quence of i.i.d. positive-valued random variables drawn from
a common probability distribution Fy. (The arrival epochs
{t;};» the impact magnitudes {x,};, and the relaxation rates {y;};
are independent.) This is equivalent to considering the col-
lection of impact coordinates {(¢;,x;,y;)}; as forming a Pois-
son point process with Poissonian rate
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N(dt X dx X dy) = 5 dt Fx(dx)Fx(dy). (5)

However, we go one step beyond Eq. (5) and consider the
collection of impact coordinates {(z;,x;,y;)}; as forming a
Poisson point process with Poissonian rate

N(dt X dx X dy) = dt px(dx)py(dy), (6)

where wy and uy are general measures defined on the posi-
tive half line (rather than probability measures).

The difference between the shot inflow statistics of Eq.
(5) and the shot inflow statistics of Eq. (6) is that the former
allows only finite shot inflow rates whereas the latter also
allows infinite shot inflow rates. The probability measures Fy
and Fy always assign a unit mass to the positive half line,
and thus result in finite shot inflow rates. The general mea-
sures uy and uy, on the other hand, may assign an infinite
mass to the positive half line, and can thus result in infinite
shot inflow rates. This difference, as we shall see in the fol-
lowing, has dramatic consequences and ramifications.

The measure uy governs the magnitudes of the incoming
shots. Rather than dealing with the measure wy directly, we
shall deal with its tail function:

T(s) = J tux(dx) (7

N

(s>0). The tail function T is monotonically decreasing to
zero (as s — ), and is bounded if and only if the measure wuy
equals (up to a multiplicative constant) a probability distri-
bution Fy. If the measure uy is a probability measure (i.e.,
my=Fy) then T(s) is the Poissonian rate at which shots with
impact magnitude greater than size s hit the system.

The measure uy governs the relaxation of the incoming
shots. The measure uy is henceforth assumed to satisfy the
integrability condition [y~ uy(dy) <oe. Rather than dealing
with the measure wy directly, we shall deal with its induced
distribution function:

D(s) = f S yldy) ®)
0y

(s>0), where « is a normalizing constant [given by ™!
=3y 'uy(dy)]. The distribution function D is a probability
distribution on the positive half line—increasing monotoni-
cally from zero (as s—0) to unity (as s — ).

III. STATIONARY STRUCTURE

In this section we study the stationary statistical structure
of the random relaxation shot noise system model. The
analysis is based on the following proposition, whose proof
is given in the Appendix.

Proposition 1. The collection of shot magnitudes =(1),
present in the system at time ¢, is a Poisson point process on
the positive half line with Poissonian rate

Nz(ds) = (lTT)ds 9)

Note that the Poissonian rate is independent of the time vari-
able +—implying that the random relaxation shot noise sys-
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tem is stationary. With Proposition 1 at hand, the analysis of
the level processes {N;};~ and of the shot noise process &
follows straightforwardly.

A. The level processes

The definition of the level processes {N;}~,, combined
with Proposition 1, implies that the level processes are sum-
mable if and only if the function T(s)/s (s>0) is integrable
at infinity—in which case they are stationary, and the station-
ary distribution of the /th level process N, is Poissonian with
mean

M(l) = F A=(ds) = lfo T(I exp x)dx. (10)
! K

0
The function M(I) (I>0), henceforth referred to as the mean
function, will play a key role in the following.

B. The shot noise process

Campbell’s theorem of the theory of Poisson processes
(see [20], Sec. 3.2), combined together with Proposition 1,
implies that the shot noise process & is summable if and only
if the mean function M is integrable at the origin—in which
case the shot noise process is stationary, and its stationary
distribution is characterized by the Laplace transform

L4(60) = exp(— fm [1—exp(- Gs)])\a(ds)>
0

:exp(— Gfm exp(— HZ)M(l)dl) (6=0). (11)

0

The cumulants corresponding to the Laplace transform of
Eq. (11)—which may happen to diverge—are given, in turn,
by

Cy(m) = f ) s"\z(ds) =m f w "M(1)dl (12)
0

0

(m=1,2,...). The shot noise mean and variance equal, re-
spectively, the first-order cumulant C,(1) and the second-
order cumulant C(2).

C. Random vs deterministic relaxation

The results obtained in this section—regarding the ran-
dom relaxation shot noise stationary structure—turned out to
be contingent on the relaxation mechanism uy via the nor-
malizing constant « alone. That is, two random relaxation
shot noise systems with the same shot inflow statistics (i.e.,
the same measures wy) but with different relaxation mecha-
nisms (i.e., different measures uy)—albeit with identical nor-
malizing constant k—will share the same stationary struc-
ture.

In particular, a classic shot noise system with relaxation
rate x and a random relaxation shot noise system with nor-
malizing constant k—both systems having the same shot in-
flow statistics—will display the same stationary structure.
Thus, we conclude that it is impossible to distinguish

041128-3



IDDO ELIAZAR

between classic shot noise systems and random relaxation
shot noise systems via their stationary statistics.

IV. CORRELATION STRUCTURE

In this section, we study the temporal statistical structure
of the random relaxation shot noise system model. We begin
with a proposition, whose proof is given in the Appendix,
regarding the autocovariance functions of the level processes
{N};>¢ and the autocovariance function of the shot noise
process &.

Proposition 2. (i) The autocovariance function of the Ith
level process N, is given by

R(T;l)=f M(l exp(7y))D(dy) (7>0).  (13)
0

(ii) The autocovariance function of the shot noise process
¢ is given by

o

Ry(7) = C4(2) J exp(— 7y)D(dy)
0

(r>0). (14)

Note that the level processes {N;};~o, when summable,
always posses well-defined autocovariance functions. This is
because  their  stationary  distributions—which  are
Poissonian—always posses finite variances. On the other
hand, the shot noise process &, when summable, may or may
not possess a well-defined autocovariance function—
depending on whether or not its stationary distribution pos-
ses a finite variance [equaling its second-order cumulant
C.2)].

A. The Poissonian autocovariance

The autocovariance function R; provides second-order in-
formation regarding the shot noise process &. The resolution-
contingent autocovariance function R—henceforth referred
to as the Poissonian autocovariance—turns out to be far
more informative.

Proposition 3. Let —o<7<---<7,<%. The multidi-
mensional probability generating function (PGF) of the ran-
dom vector (N/(7y),...,N,(7,)) is given by

(@ ) = exp( > 2 R -n0G, -1

m=1 ky <<k,

szl =1, (15)

(g - 1)) Iz

Proposition 3, whose proof is given in the Appendix, implies
that the multidimensional marginal distributions of the level
processes {N;};~, are determined—via their corresponding
multidimensional PGFs—by the Poissonian autocovariance
R. Hence, we conclude that the Poissonian autocovariance
R characterizes the process distribution of all level pro-
cesses {N}~o.

PHYSICAL REVIEW E 76, 041128 (2007)

B. The Poissonian autocorrelation

The resolution-contingent autocorrelation function corre-
sponding to the Poissonian autocovariance R—and hence-

forth referred to, analogously, as the Poissonian
autocorrelation—is given by
“ M(l exp(1y))
p(ri)= | ————=—D(dy)
0 M(l)
f T(l exp x)D(x/7)dx
- (r>0).  (16)
f T(I exp x)dx
0

The Poissonian autocorrelation p has three different interpre-
tations: (i) it is the autocorrelation function of the level pro-
cesses {N;}~¢; (ii) it is a Poissonian splitting ratio quantify-
ing the shot noise temporal dependencies; and (iii) it is the
survival probability of shot magnitudes above a given reso-
lution level. For an explanation of the second and third in-
terpretations, readers are referred to [18], Sec. V.

C. The shot noise autocorrelation

The autocorrelation function corresponding to the shot
noise autocovariance function R is given by

pe7) = f exp(- 7y)D(dy)
0

= fw exp(—x)D(%C_)dx (r>0). (17)

0

Note that the function p; may exist even in cases where the
shot noise process ¢ fails to be summable—Iet alone in cases
where it fails to possess an autocorrelation function.

The function p, turns out to be dependent, via the distri-
bution function D, on the relaxation mechanism uy alone,
and is independent of the tail function T. Hence, the function
pg can be reverse engineered so as to yield desired correla-
tion structures—the reverse engineering having no effect on
the shot noise stationary structure. Examples of reverse en-
gineered correlation structures are given in Table 1.

V. NOAH AND JOSEPH EFFECTS

In this section, we study the Noah and Joseph effects as
displayed by the random relaxation shot noise system under
consideration (precise definitions of these effects will follow
momentarily).

The analysis to be performed involves the notion of regu-
lar variation [21]. A real function ¢ is said to be regularly
varying at the limit point p if the limit lim,_,, ¢(6u)/ P(u)
exists for all positive constants 6. Theory shows that if the
function ¢ is regularly varying then lim,_,, ¢(6u)/ ¢(u)= 6",
where the exponent v is a real parameter called the “expo-
nent of regular variation.” Regularly varying functions are
generalizations of power laws, and play a key role in many
fields of probability theory (see [21], Chap. 8).
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TABLE 1. Examples of reverse engineered correlation structures: The distribution function D required in
order to yield a desired shot noise autocorrelation function pg The coefficient b and the exponent S are
arbitrary positive parameters. In examples 2 and 3 the exponent 3 is restricted to the range 0 <<S<1. The
Mittag-Leffler function of example 3 is given by Ep(z)=2;_,z*/T(1+pBk); a probability distribution is
Mittag-Leffler if its moment generating function is the Mittag-Leffler function. The compound Gamma
distribution appearing in example 5 is obtained by the composition of two different and independent Gamma
processes (in other words, by the subordination of one Gamma process to another, independent, Gamma

process).
Example Correlation structure pe(7)= Distribution function D
1 Exponential exp(=bT) Deterministic
2 Stretched exponential exp(—b7P) Lévy stable
3 Mittag-Leffler Eg(-=b7) Mittag-Leffler
4 Paretian (1+b7)7P Gamma
5 Logarithmic [1+bIn(1+7n] P Compound Gamma

A. The Noah effect

A positive-valued stationary random process is said to dis-
play the Noah effect [6] if the survival probability of its
stationary distribution is regularly varying at infinity with
exponent v=—a, where 0 <a<1. In other words, the pro-
cess’s stationary distribution is heavy tailed or fat tailed
[7]—implying, in particular, that the stationary distribution is
of infinite mean.

Let S; denote the survival probability of the shot noise
stationary distribution [whose Laplace transform is given in
Eq. (11)]. We have the following proposition.

Proposition 4. Consider the tail function T, the mean
function M, and the survival probability S,. If any of these
functions is regularly varying at infinity with exponent
v=—a (a>0) then so are the others, and the following
asymptotic equivalences hold:

iT(l)Z:wM(l)l:mS D). (18)

In particular, Proposition 4 characterizes the case in which
the shot noise process ¢ displays the Noah effect (0<«
<1).

The proof of Proposition 4 is based on the theory of regu-
lar variation [applied to Egs. (10) and (11)]: the implication
from the tail function T to the mean function M is straight-
forward; the implication from the mean function M to the
tail function T is due to Theorem 1.7.2 in [21]; the connec-
tion between the mean function M and the survival probabil-
ity S; is due to Theorem 8.2.1 in [21].

B. The Joseph effect

A finite-variance stationary random process is said to dis-
play the Joseph effect [6] if its autocorrelation function is
regularly varying at infinity with exponent v=-0, where
0<B<1. In other words, the process has long-range depen-
dence or long-range memory [8—10]—implying, in particu-

lar, that the random process has an infinite range of
dependence. !

For the random relaxation shot noise system we have the
following proposition.

Proposition 5. The function p; is regularly varying at in-
finity with exponent v=-4 if and only if the distribution
function D is regularly varying at zero with exponent v=_
(B>0)—in which case the following asymptotic equiva-
lences hold:

an (s)s—m)r(l +B)p§ s/
(19)

Moreover, if the distribution function D is regularly varying
at zero with exponent v=8 (8>0), then

o ~ T+ pm| L)

o

T(I exp x)xPdx
1
p(1;) ~ 0 — D| - |. (20)
T—00 T
f T(l exp x)dx
0

In particular, Proposition 5 characterizes the case in which
the shot noise process &—assuming that it is of finite
variance—displays the Joseph effect (0<B8<1).

The proof of Proposition 5 is based on the theory of regu-
lar variation [applied to Egs. (16) and (17)]: the implication
from the distribution function D to the function p; and to the
Poissonian autocorrelation p is straightforward; the implica-
tion from the function p; to the distribution function D is due
to Theorem 1.7.1" in [21].

C. Noah and Joseph effects

The simultaneous study of the Noah and Joseph effects,
however, is problematic. A stationary random process dis-

"The range of dependence of a finite-variance stationary random
process is, by definition, the integral of its autocorrelation function.
The range of dependence equals, up to a multiplicative constant, the
value of the process’s power spectrum at the origin.
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playing the Noah effect is of infinite variance and thus fails
to posses an autocorrelation function—via which the Joseph
effect is defined. Hence, a simultaneous study of the Noah
and Joseph effects in the case of the shot noise process € is
impossible.

Nonetheless, the Poissonian autocorrelation p is well de-
fined regardless of whether or not the shot noise process &
displays the Noah effect. Thus, the Joseph effect can be ad-
dressed via the Poissonian autocorrelation p—specifically,
via Eq. (20)—in cases where the Noah effect is displayed.
We shall return to this point in Sec. VL.

D. An example

To illustrate the profound impact of random relaxations,
consider the two following systems: (i) a classic shot noise
system with deterministic relaxation rate «; and (ii) a random
relaxation shot noise system whose relaxation rates are
drawn from a Gamma probability distribution with mode m
=« and standard deviation o=(\1+8/B)k, where S is an
arbitrary positive parameter.

Both these systems exhibit the very same stationary struc-
ture, namely, both systems share the same mean function M.
Yet the two systems have dramatically different correlation
structures: in the first system the autocorrelation is exponen-
tial, pg(7)=exp(—«7), whereas in the second system the au-
tocorrelation is algebraic,

1
T+ (PP

Note that the randomization of the relaxation rates in the
second system was rather “mild.” On the one hand, the dis-
tribution mode of the randomized relaxation rates was set to
equal the deterministic relaxation rate of the classic shot
noise system. On the other hand, the randomization
chosen—the Gamma distribution—is a well-behaved distri-
bution with finite moments of all orders and rapidly decaying
probability tails.

One would expect that such mild randomization would
have no more than mild effects on the resulting shot noise
process & Nonetheless, we see that this mild randomization
generates long-term shot noise aftereffects. In environmental
issues—such as the issue of heterogeneous radioactive pol-
lution described in the introduction—long-term aftereffects
are of considerable importance.

P (r>0). (21)

VI. FRACTAL SYSTEMS

Within the totality of all random relaxation shot noise
systems there is a special class of fractal systems which we
shall focus on in this section.

A. Fractality

Determining the class of fractal systems begins with the
observation that the Poissonian autocorrelation p is indepen-
dent of the resolution variable / if and only if the mean
function M is a power law [this observation is an immediate
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consequence of Eq. (16)]. More specifically, we have the
following proposition.

Proposition 6. The following statements are equivalent (a
and « being arbitrary positive parameters).

(1) The tail function T admits the power-law form

T(s) = Kas% (s>0). (22)

(2) The mean function M admits the power-law form
a
M(]) = 5 (1>0). (23)

(3) The Laplace transform L, of the shot noise stationary
distribution admits the Lévy stable form?

Ly(0) =exp[-T'(1 - @)ab*] (6=0). (24)

(4) The Poissonian autocorrelation p admits the
resolution-independent form

p(r;l) = pdar) (1=0). (25)

Proposition 6 follows straightforwardly from the results
obtained in Secs. III and I'V. We define a random relaxation
shot noise system as fractal if any of the equivalent state-
ments of Proposition 6 holds. The term “fractal” is due to the
scale invariance of the Poissonian autocorrelation p with re-
spect to the resolution variable /.

Note that fractal systems emanate from underlying mea-
sures Ly assigning infinite mass to the positive half line. We
stress that no classic shot noise system model—generating
the initial shot magnitudes {x;}; from a common probability
distribution Fy—can yield fractal shot noise systems.

B. Asymptotic fractality

Proposition 4 combined with Eq. (16) implies the follow-
ing “asymptotic counterpart” of Proposition 6.

Proposition 7. The following statements are equivalent («
being an arbitrary positive parameter).

(1) The tail function T is regularly varying at infinity with
exponent v=—a.

(2) The mean function M is regularly varying at infinity
with exponent v=—a.

(3) The survival probability S, is regularly varying at in-
finity with exponent v=—a.

(4) The Poissonian autocorrelation p admits the limit:

lhjzlo p(r;l) = pdlar) (7=0). (26)

We define a random relaxation shot noise system as
asymptotically fractal if any of the equivalent statements of
Proposition 6 holds.

The limiting function p(7;%)=1lim,_,. p(7;l) (7=0) can
be regarded as a “rare-event” autocorrelation function—
measuring the shot noise correlations above high resolution
levels ([— ).

“This statement holds only in the parameter range 0 <a<1.
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C. Noah and Joseph effects

Both fractal and asymptotically fractal systems with ex-
ponent 0<a <1 display the Noah effect. Yet in both such
systems the function pg(ar) (7=0) turns out to assume the
role of a “legitimate” quantitative measure of correlation—
though it cannot be interpreted as the autocorrelation of the
shot noise process & (which is not defined due to infinite
variances).

Thus, in the case of fractal and asymptotically fractal sys-
tems displaying the Noah effect, we can use Proposition 5 to
characterize the display of the Joseph effect via the
asymptotic behavior (in the limit 7— o) of the function

Pg(CYT)-

D. Amplitudal-temporal decoupling

Fractal systems admit a unique amplitudal-temporal de-
coupling. This is best exemplified via the multidimensional
PGFs of the level processes, for which

<211VI(T1) ... ZLV/(T”)> = CXP[M(Z)PTI,...,T,,(ZI’ ozl (27)

where

P, . Grc)=> 2 plaln, -7)

m=1 ky<---<k,,

X(zg = 1)+ (2, = 1)

(-oo<n < <7, <oy gyl Lzl = 1) (28)

The right-hand-side exponent of Eq. (27) factorizes into
two terms: (i) The amplitudal term M(l), which depends on
the resolution variable [ alone, and which governs the
system’s stationary structure; (ii) the temporal term
PTIW,Tn(zl,...,z,,), which depends on the time variables
T(,...,T, alone, and which governs the system’s temporal
structure.

Thus, in the case of fractal systems, the amplitudal struc-
ture and the temporal structure decouple—the former being
characterized by the mean function M, and the latter being
characterized by the function p, Such an amplitudal-
temporal decoupling holds only in the case of fractal sys-
tems.

VII. CONCLUSIONS

We introduced and studied a random relaxation shot noise
system model. This model generalizes the classic shot noise
model in two ways: (i) it considers the shot inflow to follow
a general Poissonian point process with possibly infinite
Poissonian rates; and (ii) it randomizes the exponential re-
laxation mechanism governing the decay of incoming shots.

While retaining the linear and Markovian exponential re-
laxation of the classic shot noise model—a feature elemental
in a plethora of physical systems—the random relaxation
shot noise model is fully capable of displaying “anomalous
statistics” which, in existing shot noise models, are attainable
via the incorporation of either (i) linear non-Markovian re-
laxations, or (ii) nonlinear Markovian relaxations.
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The results of this paper are summarized as follows.

(1) We analyzed both the stationary structure and the cor-
relation structure of random relaxation shot noise systems,
providing closed-form analytical formulas quantifying these
structures.

(2) We facilitated the design of random relaxation shot
noise systems whose stationary structure is identical to the
stationary structure of classic shot noise systems—but yet
their autocorrelation can be reverse engineered to admit any
desired structure.

(3) We introduced a resolution-contingent Poissonian au-
tocovariance function which turned out to characterize the
process distribution of random relaxation shot noise systems.

(4) We showed that random relaxation shot noise systems
can display both the Noah effect and the Joseph effect,
and characterized the display—both separately and
simultaneously—of these effects.

(5) We studied and characterized the class of (asymptoti-
cally) fractal random relaxation shot noise systems which are
(asymptotically) invariant to changes in the resolution scale.

With regard to physical environments polluted by radio-
active contamination, this research reveals a crucial differ-
ence between the cases of homogeneous pollution (where all
contaminants are of the same type) and heterogeneous pol-
lution (where the contaminants are of different types). While
both cases exhibit identical radiation-level statistics, their
long-term aftereffects are profoundly different: exponentially
decaying correlations in the homogeneous case versus arbi-
trarily decaying correlations in the heterogeneous case. This
understanding is of importance when assessing the impact of
present-time pollutions on future radiation levels.

APPENDIX

In the appendix we prove the propositions asserted above.
To that end we shall make use of the theory of Poisson point
processes [20]. We define the notion of Poisson point pro-
cesses, state two key results regarding these processes, and
then turn to proving the propositions.

Definition. A countable collection of points {w;}; scattered
randomly across a space () is a Poisson point process with
Poissonian rate \(dw) if (i) the number of points residing
within the set SC () is a Poisson-distributed random variable
with mean [¢A\(dw); and (ii) the numbers of points residing
within disjoint sets are independent random variables.

Informally, this means that points are scattered randomly
across the space () as follows. The space is divided into a
countable collection of infinitesimal “space cells.” At the cell
dw—independently of all other cells—we toss a coin with
infinitesimal success probability N(dw). If successful then a
single point is placed at the cell, and if unsuccessful then the
cell is left empty.

The characteristic functional. A countable collection of
points {w;}; scattered randomly across the space () is a Pois-
son point process with Poissonian rate A(dw) if and only if

<Hf<w,-)> = exp( L [f(w) - 1]x(dw)> (A1)

holds for all real test functions f [defined on the space () and
such that the integral appearing on the right-hand side of
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Eq. (Al) is convergent]. The left-hand side of Eq. (Al) is
referred to as the characteristic functional of the point pro-
cess {w;}—the functional’s variable being the test function f.
Covariance. Let {w;}; be a Poisson point process on the
space () with Poissonian rate A(dw), and let f and g be a pair
of real functions defined on the space (). The covariance
between the random sums X;f(w;) and 2,g(w;) is given by

Cov[ 2 flw) B gl )= | [flwlg(hida). (42)

provided that the integral appearing on the right-hand side of
Eq. (A2) is convergent.

1. Proof of Proposition 1

We compute the characteristic functional of the collection
E(1).

Let f be an arbitrary test function defined on the positive

half line. Then
< I1 f(p)>
PEE®

[due to the definition of the collection = (f)—recall Eq. (1)]

=<H Sx; exp[—y(t - t,)])>

L=t

(A3)

(A4)

[due to the fact that {(¢;,x;,y,)}; is a Poisson point process
with Poissonian rate given by Eq. (6), and using Eq. (A1)]

=exp(ﬁ=_w J):O f;o{f(x expl-y(t-1")]) -1}

Xdt ,/'LX(dx):U’Y(dy)) : (A5)

Now,

f ) f J {f(x exp[—y(r—1")]) = 1}dt’ puxl(dx) uy(dy)
(A6)

(using the change of variables 7=¢t—¢' and changing the or-
der of integration)

= f l f ( [f(x exp(=y7)) - l]dT) Mx(dx)} fy(dy)
y=0 x=0 =0
(A7)

[using the change of variables s=x exp(—y7) in the inner
integral ]

- fo{ f Ol f O(f ()= )I{S<x}§dS}Mx(dX)}My(dy)

(A8)
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(changing the order of integration)

=< f 1uy(dy>) f [f<s>—1]<1f ,ux(dX))ds
_\::Oy s=0 S J =

(A9)

[using the tail function T defined in Eq. (7) and the normal-
izing constant x of Eq. (8)]

——j [f(s) - 1]( (S))

Combining things together, we conclude that the characteris-
tic functional of the collection Z(¢) is given by

<H( f(p)> -exp{ f [£(s) - 1]( LT ) }

(A11)

(A10)

Equation (A1) thus implies that the collection Z(¢) is a Pois-
son point process on the positive half line with Poissonian
rate

1 T(s))

K S

A=(ds) = ( (A12)

2. Proof of Proposition 2

We split the proof into two parts.

a. Level processes

We compute the autocovariance function R(7;1) (7=0) of
the /th level process N;:
R(7;1) = Cov[N,(2),N/(t+ 7)] (A13)

[using Egs. (2) and (A2)]

=J°° f“ f“ (Hx exp[= y(t—1")] > Bt < 1}
'=—o0 J x=0 J y=0

XI{x exp[-y((t+ 7) - t')] > [}

XKt = (t+ 7)})dt’ pux(dx) puy(dy) (A14)

(using the change of variables u=r—¢" and changing the
order of integration)

-| l | ( | I{X>leXp[y(u+T)]}ux(dX))du}My(dy)
y=0 u=0 x=0

(A15)
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[using the tail function T defined in Eq. (7)]

=J (J T(l exply(u+ T)])du),uy(dy) (A16)

y=0 (=0

(using the change of variables s=/ exp[y(u+7)] in the inner

integral)
e T(s)
= f ( f —dS) py(dy)
y=0 s=lexp(ry) S y

[using the mean function M defined in Eq. (10) and the dis-
tribution function D defined in Eq. (8)]

(A17)

:J M(l exp(1y))D(dy). (A18)
0

b. Shot noise process

We compute the autocovariance function Rg(7) (7=0) of
the shot noise process &:

Ry(7) = Cov[&(1), &1 + 7)] (A19)
[using Egs. (3) and (A2)]
= J f [x exp[-y(t—1)]{t' = 1}
= J x=0 J y=0
Xxexp[—y((r+7)—1")]
XKt = (t+ 1)}ldt’ py(dx) py(dy) (A20)

(using the change of variables u=t—¢" and changing the or-
der of integration)

=(foc xz,ux(dx)> {f“ (f“ exp(— 2yu)du>
x=0 y=0 u=0

Xexp(- W)My(d)’)} (A21)

[using, in the x integral, integration by parts and the tail
function T defined in Eq. (7)]

” *
= (2 fs . sT(s)ds) ( J} . geXp(— W)My(dy)> (A22)

=l f ) (1&),1}( f " expl- ry)fw(dw)
s=0 K s y=0 y

(A23)

[using, in the s integral, integration by parts and the mean
function M defined in Eq. (10); using, in the y integral, the
distribution function D defined in Eq. (8)]

=<2 f ’ lM(l)dl)( f i exp(= 7v)D dy)) (A24)
0 0
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[using Eq. (12) for the second-order cumulant C(2) of the
shot noise stationary distribution]

=C2) f exp(— 7y)D(dy). (A25)
0

3. Proof of Proposition 3

Let —o <7 <---<7,<0. We compute the multidimen-
sional PGF of the random vector (Ny(7,), ...,N/(7,)), and do
so in three steps.

a. Step 1
Set
xi(t,x,y) =Hx exp[- y(7,—1)] > Bt = 7} (A26)
(k=1,...,n; t real; x,y>0). Combining Egs. (2) and (A26)

together, we have

Ni(7) = 2 X153, 7,) (A27)

N[(Tk H Xi(tX5y;) (A28)

= [ =1I1 (H Zz,(u,.,x,.,yl.)) (A29)
k=1 i \k=1

|=1). Since {(t;,x;,y,)}; is a Poisson point pro-
cess with Poissonian rate given by Eq. (6), Eq. (A1) further
implies that

@1 ) = exp[P, (21, 0z)]s (A30)
where
(zl, s Zp) = f J J [(H Xk(txy)> :|
=—n J x=0 J y=0
Xdt py(dx) pmy(dy). (A31)
b. Step 2
Note that
(H zik(””)) — =TI+ G- Dxatexy)] -1
k=1 k=1
=2 2 Do xy) o x (txy)]
m=1 k;<---<k,,
X(Zkl—l)"'(zkm—l), (A32)
and hence
PTI,...,Tn(Zl’ s 7Zn) = E 2 Ckl,...,km
m=1 ky<---<k,,
><(Zkl -1)-- (ka— 1), (A33)
where
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Ckl,...,km=J f [Dxe, (t2,3) - x, (£.x,3)]
=—0 J x=0 J y=0

X ditp(dx) py(dy). (A34)

Now, using Eq. (A26) and the fact that 7, <+ <17 , we
have

Xkl(t’x’y) X, (1.X,Y)
= 1{x expl-y(m, ~ )] > 1
U expl- y(m, 01> 1
X{r=mn}--Kr=m }
= Hxexpl-y(r,, -] > 1= 7,)
=Kx>lexply(n, -0}t = 7} (A35)

Equation (A35), in turn, implies that

Ckp--nkm:J_ f_of_o (x> Lexply(m, -]}
Xt = Tkl})dt fx(dx) py(dy). (A36)

c. Step 3

We set A=7; Tk and compute the value of the coeffi-
cient Ckl,,..,k :

J f (1> Texply(r, -0 =7, })
=—0 J x=0 J y=0

Xdt py(dx) py(dy) (A37)

(using the change of variables 7= i, ~1 and changing the
order of integration)
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= f [ f ( f Ix > lexply(A + T)]},ux(dX)>dT] py(dy)
y=0 =0 x=0

(A38)

[using the tail function T defined in Eq. (7)]

=f (f T(l exply(A+ T)])dT),uy(dy) (A39)
y=0 =0
(using the change of variables s=1I exp[y(A+7)])

=F (F mdS> lMy(dy)
y=0 y

) s=lexp(dy) S

(A40)

[using the mean function M defined in Eq. (10) and the dis-
tribution function D defined in Eq. (8)]

=f M(l exp(Ay))D(dy). (A41)
0

Thus, using the definition of the Poissonian autocovari-
ance [Eq. (13)], we obtain

Ch,...k, =R(m =7 30). (A42)

Finally, combining Egs. (A30), (A33), and (A42) together,
we conclude that

n

(- i = exp( S 3 R -

m=1ky<--<k,,

'(Zkl_l)"'(zk’n_l)>- (A43)
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